Retinoschisin expression and localization in rodent and human pineal and consequences of mouse RS1 gene knockout.

نویسندگان

  • Yuichiro Takada
  • Robert N Fariss
  • Morten Muller
  • Ronald A Bush
  • Elisabeth J Rushing
  • Paul A Sieving
چکیده

PURPOSE The pineal gland shares a common neuroectoderm origin with the retina, and like the retina, regulates circadian rhythms through melatonin secretion. Recent expressed tag sequence (EST) analysis showed that several gene mutations, including RS1, which cause retinal degeneration, are also expressed in the pineal gland. Mutations in RS1 result in structural delamination of the neural retinal layers, leading to formation of schisis cavities in men affected with "X-linked retinoschisis" (XLRS). In this study, we evaluated RS1 expression in the rat and mouse as well as in human pineal and looked for morphological changes in the pineal of the RS1 knockout (RS1(-/Y)) mouse. METHODS We analyzed rat and mouse pineal for RS1 expression by Northern blot and in situ hybridization. RS protein, synaptophysin, S-100, and GFAP localization in the pineal of rat and mouse and RS protein in human pineal were evaluated immunohistochemically. Morphological studies were performed using transmission electron microscopy and light microscopy comparing wild-type to the RS1(-/Y) mouse. RESULTS RS1 expression was detected in RNA isolated from both the pineal and retina as a single major band migrating at about 5.5 kbp in Northern blots. RS1 riboprobe in situ hybridization demonstrated message in rat and mouse pineal, and immunohistochemistry showed RS protein in pinealocytes expressing synaptophysin but not in interstitial GFAP- and S100-positive glial cells. RS protein was present in many pinealocytes in human pineal. In light and electron microscopic examination of the pineal gland from RS1(-/Y) mice none of the structural changes found in the retina, such as cavity formation and loosening of the tissue, were seen. CONCLUSIONS This study demonstrates that RS protein is expressed in the pinealocytes but not in interstitial glial cells. The lack of structural abnormalities in the RS1(-/Y) mice suggests that RS serves a different function in the pineal gland than in the retina.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular modeling of retinoschisin with functional analysis of pathogenic mutations from human X-linked retinoschisis.

Gene mutations that encode retinoschisin (RS1) cause X-linked retinoschisis (XLRS), a form of juvenile macular and retinal degeneration that affects males. RS1 is an adhesive protein which is proposed to preserve the structural and functional integrity of the retina, but there is very little evidence of the mechanism by which protein changes are related to XLRS disease. Here, we report molecula...

متن کامل

Synaptic pathology in retinoschisis knockout (Rs1-/y) mouse retina and modification by rAAV-Rs1 gene delivery.

PURPOSE At an early age, the retinoschisin knockout (Rs1-KO) mouse retina has progressive photoreceptor degeneration with severe disruption of the outer plexiform layer (OPL) that decreases at older ages. The electroretinogram (ERG) undergoes parallel changes. The b-wave amplitude from bipolar cells is reduced disproportionately to the photoreceptor a-wave at young but not at older ages. The pr...

متن کامل

Coexpression and interaction of wild-type and missense RS1 mutants associated with X-linked retinoschisis: its relevance to gene therapy.

PURPOSE X-linked retinoschisis (XLRS) is an early-onset retinal disease caused by mutations in retinoschisin (RS1), a multisubunit, extracellular protein implicated in retinal cell adhesion. Delivery of the normal RS1 gene to photoreceptors of retinoschisin-deficient mice results in prolonged protein expression and rescue of retinal structure and function. However, most persons with XLRS harbor...

متن کامل

Retinoschisin is linked to retinal Na/K-ATPase signaling and localization

Mutations in the RS1 gene cause X-linked juvenile retinoschisis (XLRS), a hereditary retinal dystrophy. We recently showed that retinoschisin, the protein encoded by RS1, regulates ERK signaling and apoptosis in retinal cells. In this study, we explored an influence of retinoschisin on the functionality of the Na/K-ATPase, its interaction partner at retinal plasma membranes. We show that retino...

متن کامل

Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure.

Deleterious mutations in RS1 encoding retinoschisin are associated with X-linked juvenile retinoschisis (RS), a common form of macular degeneration in males. The disorder is characterized by a negative electroretinogram pattern and by a splitting of the inner retina. To gain further insight into the function of the retinoschisin protein and its role in the cellular pathology of RS, we have gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular vision

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2006